Gender Detection using Machine Learning Techniques and Delaunay Triangulation
نویسندگان
چکیده
Data mining today is being used widely in diverse areas. For example: fraudulent systems, recommender systems, disease prediction, and numerous other applications. One such application is exploited in this article. This paper presents an approach to detect gender of a person through frontal facial image, using techniques of data mining and Delaunay triangulation. Gender prediction can prove to be a very useful technique in HCI (Human Computer Interaction) Systems. Classification, being a very power technique in data mining to group categorical data, is used here to classify a gender as either male, or female. Various classification algorithms such as Functional Trees, AdaBoost, J48, and few others are used to gauge the maximum accuracy. The model used in this paper is robust and attains accuracy level of 93.8283% along with relative scale invariance. Details of the prediction model and results are reported herein.
منابع مشابه
Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملUsing Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...
متن کاملActive-Contour-Based Image Segmentation Using Machine Learning Techniques
We introduce a non-linear shape prior for the deformable model framework that we learn from a set of shape samples using recent manifold learning techniques. We model a category of shapes as a finite dimensional manifold which we approximate using Diffusion maps. Our method computes a Delaunay triangulation of the reduced space, considered as Euclidean, and uses the resulting space partition to...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملLearning Qualitative Models through Partial Derivatives by Padé
Padé is a new method for learning qualitative models from observation data by computing partial derivatives from the data. Padé estimates partial derivatives of a target function from the learning data by splitting the attribute space into triangles or stars from Delaunay triangulation, or into tubes, and computing the linear interpolation or regression within these regions. Generalization is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015